
UNIT I INTRODUCTION TO PIC MICROCONTROLLER

Introduction to PIC Microcontroller–PIC 16C6x and PIC16C7x Architecture–PIC16cxx–-
Pipelining - Program Memory considerations – Register File Structure - Instruction Set -
Addressing modes – Simple Operations.

UNIT II INTERRUPTS AND TIMER
PIC micro controller Interrupts- External Interrupts-Interrupt Programming–Loop time
subroutine - Timers-Timer Programming– Front panel I/O-Soft Keys– State machines and key
switches– Display of Constant and Variable strings.

UNIT III PERIPHERALS AND INTERFACING
I2C Bus for Peripherals Chip Access– Bus operation-Bus subroutines– Serial EEPROM—
Analog to Digital Converter–UART-Baud rate selection–Data handling circuit–Initialization -
LCD and keyboard Interfacing - ADC, DAC, and Sensor Interfacing.

UNIT IV INTRODUCTION TO ARM PROCESSOR
ARM Architecture –ARM programmer’s model –ARM Development tools- Memory Hierarchy
–ARM Assembly Language Programming–Simple Examples–Architectural Support for
Operating systems.

UNIT V ARM ORGANIZATION
3-Stage Pipeline ARM Organization– 5-Stage Pipeline ARM Organization–ARM Instruction
Execution- ARM Implementation– ARM Instruction Set– ARM coprocessor interface–
Architectural support for High Level Languages – Embedded ARM Applications.

TEXT BOOKS:
1. Peatman,J.B., “Design with PIC Micro Controllers”PearsonEducation,3rdEdition, 2004.
2. Furber,S., “ARM System on Chip Architecture” AddisonWesley trade Computer
Publication, 2000.

ST.ANNE'S COLLEGE OF ENGINEERING & TECHNOLOGY

EE8018 – MICROCONTROLLER BASED SYSTEM DESIGN

UNIT I
INTRODUCTION TO PIC MICROCONTROLLER

INTRODUCTION
Simplicity and ease, which the higher programming languages bring for program writing as well
as broader application of the microcontrollers, was enough to incite some companies as Micro
engineering to embark on the development of BASIC programming language. What did we
thereby get? Before all, the time of writing was shortened by employment of prepared functions
that BASIC brings in (whose programming in assembler would have taken the biggest portion of
time). In this way, the programmer can concentrate on solving the essential task without losing
his time on writing the code for LCD display. To avoid any confusion in the further text, it is
necessary to clarify three terms one encounters very often.

Programming language is understood as a set of commands and rules according to which we
write the program and therefore we distinguish various programming languages such as BASIC,
C, PASCAL etc. On the BASIC programming language the existing literature is pretty extensive
so that most of the attention in this book will be dedicated to the part concretely dealing with the
programming of microcontrollers.
Program consists of sequence of commands of language that our microcontroller executes one
after another.

BASIC compiler is the program run on PC and it's task is to translate the original BASIC code
into the language of 0 and 1 understandable to the microcontroller.

BASIC for PIC microcontrollers:
As a programming language, BASIC is since long time ago known to the PC users to be the
easiest and the most widespread one.
Nowadays this reputation is more and more being transferred onto the world of microcontrollers.
PIC BASIC enables quicker and relatively easier program writing for PIC microcontrollers in
comparison with the Microchip's assembling language MPASM. During the program writing, the
programmer encounters always the same problems such as serial way of sending messages,
writing of a variable on LCD display, generating of PWM signals etc. All for the purpose of
facilitating programming, PIC BASIC contains itsbuilt -in commands intended for solving of the
problems often encountered inpraxis. As far as the speed of execution and the size of the
program are concern, MPASM is in small advantage in respect with PIC BASIC (therefore exists
the possibility of combining PIC BASIC and assembler). Usually, the part of the program in
which the same commands are executed many times or time of the execution critical, are written
in assembler. Modern microcontrollers such as PIC execute the instructions in a single cycle
lasting for 4 tact of the oscillator. If the oscillator of the microcontroller is 4MHz, (one single
tact lasts 250nS), then one assembler instruction requires 250nS x 4 = 1uS for the execution.
Each BASIC command is in effect the sequence of the assembler instructions and the exact time
necessary for its execution may be obtained by simply summing up the times necessary for the
execution of assembler instructions within one single BASIC command.

PIC microcontrollers
The creation of PIC BASIC followed the great success of Basic stamp (small plate with
PIC16F84 and serial eeprom that compose the whole microcontroller system) as its modification.
PIC BASIC enables the programs written for the original Basic stamp to be translated for the
direct execution on the PIC16xxx, PIC17Cxxx and PIC18Cxxx members of the microcontrollers
family. By means of PIC BASIC it is possible to write programs for the PIC microcontrollers of
the following families PIC12C67x, PIC14C000, PIC16C55x, PIC16C6x, PIC16C7x, PIC16x84,
PIC16C9xx, PIC16F62x, PIC16C87x, PIC17Cxxx and PIC 18Cxxx. On the contrary, the
programs written in PIC BASIC language cannot be run on the microcontrollers possessing the
hardware stack in two levels as is for example the case of PIC16C5x family (that implies that by
using the CALL command any subroutine can be called not more than two times in a row).
For the controllers that are not able to work with PIC BASIC there is an adequate substitution.
For example, instead of PIC16C54 or 58, we can use pin compatible chips PIC16C554, 558, 620
and 622 also operating with PIC BASIC without any difference in price.

Currently, the best choice for application development, using PIC BASIC are microcontrollers
from the family : PIC16F87x, PIC16F62X and of course the famous PIC16F84. With this family
of PIC microcontrollers, program memory is created using FLASH technology which provides
fast erasing and reprogramming, thus allowing faster debugging. By a single mouse click in the
programming software, microcontroller program can be instantly erased and then reloaded
without removing chip from device. Also, program loaded in FLASH memory can be stored after
power supply has been turned off. The older PIC microcontroller series (12C67x, 14C000,
16C55x, 16C6xx, 16C7xx and 16C92x) have program memory created using EPROM/ROM
technology, so they Basic for PIC Microcontrollers 5 can either be programmed only once (OTP
version with ROM memory) or have glass window (JW version with EPROM memory), which
allows erasing by few minutes exposure to UV light. OTP versions are usually cheaper and are
used for manufacturing large series of products. Besides FLASH memory, microcontrollers of
PIC16F87x and PIC16F84 series also contain 64-256 bytes of internal EEPROM memory, which
can be used for storing program data and other parameters when power is off. PIC BASIC has
built -in READ and WRITE instructions that can be used for loading and saving data to
EEPROM. In order to have complete information about specific microcontroller in the
application, you should get the appropriate Data Sheet or Microchip CD-ROM.

PIC Microcontrollers
PIC stands for Peripheral Interface Controller coined by Microchip Technology to identify its
single chip microcontrollers. These devices have been phenomenally successful in 8-bit
microcontroller market.
The main reason is that Microchip Technology has constantly upgraded the device architecture
and added needed peripherals to the microcontroller to ’suit customers’ requirements. The
development tools such as assembler and simulator are freely available on the internet.
Low-end Architectures
Microchip PIC microcontrollers are available in various types.
When PIC became available from General Instruments in early 1980’s, the microcontroller

consisted of a very simple processor executing 12-bit wide instructions with basic I/O functions.
These devices are known as low-end architectures. Some of the low-end device past numbers are
12C5XX, 16C5X, and 16C505

Mid-range Architectures
Mid-range Architectures are built by upgrading low-end architecture with more number of
peripherals, more numbers of register and more data memory. Some of the mid-range devices are
16C6X 16C7X, 16F873 Program memory type
C = EPROM
F = Flash
RC = Mask ROM

Popularity of PIC microcontrollers is due to the following factors:
1. Speed: Harvard Architecture, RISC Architecture
1 instruction Cycle = 4 clock cycles.
For 20 MHz clock, most of the instructions are executed in 0.2μs or five instructions per
microsecond.
2. Instruction Set Simplicity:
The instruction set consists of just 35 instructions (as opposed to 111 instructions for 8051)
3. Power on reset
Power-out reset
Watch-dog timer
Oscillator Options
• low-power Crystal
• Mid-range Crystal
• High-range Crystal
• RC Oscillator
4. Programmable timer options on chip ADC
5. Up to 12 independent interrupt sources
6. Powerful output pin control 25mA (max.) current sourcing capability.
7. EPROM/OTP/ROM/Flash memory options.
8. Free assembler and simulator support from microchip.

CPU Architecture and Instruction Set

CPU Registers
W, the working register, is used by many instructions as the source of an operand. It may also
serve as the destination for the result of the instructions execution. It works as the accumulator.

Indirect data memory address points.

FSR is the pointer used for indirect addressing. The program is supported by an eight-level stack.
When an interrupt occurs, the program counter is automatically pushed on to the stack. Since
PIC microcontrollers programs are normally designed for handling one interrupt at a time,
further
Basic Architecture of PIC Microcontroller

Memory Organization
The PIC 16C7X family has a 13-bit program counter capable of addressing 8k×14 program
memory.
PIC16C74A has 4k×14 program memory. For those devices with less than 8k program memory,
accessing a location above the physically implemented address will cause a wrap around.
Program memory map and stack
16C74A has 4k program memory. The address range is 0000H - 0FFFH. The reset vector is
0000H and the interrupt vector is 0004H.

UNIT II
INTERRUPTS AND TIMER

Overview of Timer Modules
Timer-0 Overview
The Timer 0 module is a simple 8-bit overflow counter. The clock source can be either the
internal clock (fosc/4) or an external clock. When the clock source is an external clock, the Timer
0 module can be selected to increment on either the rising or falling edge.
Timer-0 module also has a programmable prescalar option. This prescalar can be assigned either
to Timer 0 or the watchdog Timer.
The counter sets a flag TOIF when it overflows and can cause an interrupt at that time if that
interrupt source has been enabled (TOIF=1). Timer 0 can be assigned an 8-bit prescalar that can
divide the input by 2,4,8,16,...,256. Writing to TMRO resets the prescalar assigned to it.
Timer-0, or its prescalar can be connected to either of two input sources.
1. fosc/4
2. RA4/ TOCKI, the input connected to bit 4 of PORTA.

External clock synchronization

Four of PORTB’s pins RB7 : RB4 have an interrupt on change feature. Only pins configured on
inputs can cause this interrupt to occur. The input pins (of RB7 : RB4) are compared with the old
values on the last read of Port B. the ”mismatch” outputs of RB7 : RB4 are used together to
generate the RB port change interrupt flag bit RB1F.

UNIT III
PERIPHERALS AND INTERFACING

V

UNIT IV
INTRODUCTION TO ARM PROCESSOR

ARM designs microprocessor technology that lies at the heart of advanced digital products, from
mobile phones and digital cameras to games consoles and automotive systems, and is leading
intellectual property (IP) provider of high-performance, low-cost, power-efficient RISC
processors, peripherals, and system-on-chip (SoC) designs through involvement with
organizations such as the Virtual Socket Interface Alliance (VSIA) and Virtual Component
Exchange (VCX).
ARM also offers design and software consulting services.
ARM's architecture is compatible with all four major platform operating systems: Symbian OS,
Palm OS, Windows CE, and Linux. As for software, ARM also works closely with with its
partners to provide optimized solutions for existing market segments.
These benefits are making the ARM company a complete solution provider.

The company offers a complete solution that is essential to the manufacturing process. Although
ARM does not manufacture processors itself, ARM licenses its cores to semi-conductor
manufacturers to be integrated into ASIC standards and then the company in using test chips
manufactured by its partners to measure and validate the functionality of the core. ARM is able
to accelerate OEM time-to-market by capitalizing on its architecture. By providing the IP and
supporting services, customers can gain a jump on their design cycle and obtain a competitive
edge in their targeted market segment. At that point, the architecture is portable to further
product generations or applications as all code creation is directly compatible with any future
architecture produced by ARM.

• ARM's Global Technology Partner Network is the largest in the industry, spanning from
semiconductor manufacturers to distributors. ARM has worked diligently to ensure that the
partnerships provide proven solutions in real-time operating systems (RTOS), EDA tools,
development systems, applications software, and design consulting, all built around the ARM
architecture.

This block diagram describes the ARM solution. The company recognizes that it cannot just
present hardened macros and synthesizable CPUs to the industry, but it must also provide the
ASIC infrastructure in the form of AMBA, the PrimeCell Peripherals, and models and modeling
tools for the cores. There is also the need for ARM to pursue ports for RTOSs, develop debug
hardware and software development tools, and, of course, embedded software for "off-the-shelf"
integration. ARM combines all these futures together with support and training, to accelerate the
design cycle and favour a successful product.

Introduction of the ARM's Core Families and their benefits
Overview of ARM's current families of main cores:

The ARM7 and ARM9 families have contributed to ARM's success. Each core family has
several "children" that incorporate many different value-added features and combinations.
Essentially, there are four main families available now for license: ARM7, ARM9, ARM9E-S,
and ARM10. The ARM7 family features hardened and synthesizable macrocells with variants
that incorporate cache with either a memory protection unit (MPU) or memory management unit
(MMU). Other features include real-time debug (RTD) and real-time trace (RTT) technology.
The ARM9 family consists of hardened macrocells with variants also including cache with an
MPU or MMU, as well as the RTD and the RTT. Although the ARM9E-S family was released
under a different architecture version, ARMv5TE, the fundamental design of the core is based on
the ARM9TDMI family. The "E" identifies that the family is a DSP-enhanced architecture and
the "S" identifies that the family is synthesizable.
The ARM10 family is the highest performance family to date and will also embody the "E"
extensions that were developed for the ARM9E-S family. Finally, the StrongARM and XScale
families are ARM compliant architectures available from Intel.

The Evolution of the ARM architecture:

Architecture V1 was implemented only in the ARM1 CPU and was not utilized in a commercial

product. Architecture V2 was the basis for the first shipped processors. These two architectures
were developed by Acorn Computers before ARM became a company in 1990. After that
introduced ARM the Architecture V3, which included many changes over its predecessors.
These changes resulted in an extremely small and power-efficient processor suitable for
embedded systems.
Architecture V4, co-developed by ARM and Digital Electronics Corporation, resulted in the
Strong ARM series of processors. These processors are very performance-centric and do not
include the onchip debug extensions. This architecture was further developed to include the
Thumb 16-bit instruction set architecture enabling a 32-bit processor to utilize a 16-bit system.
Today, ARM only licenses cores based on Architecture V4T or above. The latest architectures,
version 5TE and 5TEJ, embody added instructions for DSP applications and the Jazelle-Java
extensions, respectively. Currently, the ARM9E and 10E family of processors are the only
implementations of these architectures.

From a development standpoint, ARM cores offer the advantage of a fully 32-bit processor
designed specifically for embedded applications. An important feature is the embedded core
debug facilities, which reduce the debugging stage of development. In some cases, this can be
two-thirds of the overall development cycle.
Architecture compatibility allows code re-use and results in reduced design time. This in turn
leads to reduced system cost, by eliminating investment in a second set of development tools to
write code for a new processor architecture. The modular approach of the advanced micro-
controller bus architecture, (AMBA), enables design reuse. This lowers the complexity of system
on-chip (SoC) designs and reduces future design costs.
ARM and third parties offer the developer proven compiler technology and debug solutions.
Multiple RTOSs and silicon sources mean that the developer will not need to change the
preferred vendor in order to migrate to this architecture.

Redusing System Costs:

The ARM product roadmap:

Since the introduction of the ARM7 architecture, there has been huge leaps in core processing
performance. As shown here, ARM families provide a wide range of performance, from 100
MIPS to 1000 MIPS.This increase in performance can be attributed to two main driving factors.
The most obvious factor is the advances that have been made in new process technologies. The
other is the engineering changes implemented in each subsequent generation of ARM processors
and architectures.

Specific examples include a new pipeline in the ARM9 family, and the implementation of a
Harvard bus architecture in the ARM 9 over the Von Neumann architecture in the ARM7. The
result is that the ARM9 family doubles the performance of the ARM7 family. Recent
developments include DSP and Jazelle-Java extensions to some of the new architectures.
These products enable feature rich applications to benefit from the high-performance and low
power consumption intrinsic to ARM processor cores. Because of the fact that true embedded
control applications typically require a processor with cache and memory protection to utilize
real-time operating systems, ARM has developed a vertical expansion of CPUs to match these
requirements. Each processor provides a unique, and in some cases configurable, amount of
cache.
For example, the ARM9E-S family offers the ability to configure the size of instruction and data
cache, as well as the ability to configure tightly coupled SRAM blocks. These features enable
you to custom fit the CPU to specific application requirements. Many other features can be
added via the co-processor interface, such as the Vector Floating Point
unit for the ARM10 and ARM9E families.
In other words, ARM has produced architectural families that are compatible, flexible, and
encompass the full range of embedded requirements. Each product is designed to allow multi-
sourcing at every level of development. ARM is now the de-facto standard in embedded IP.
Explanation of the ARM architecture

ARM cores use a 32-bit, Load-Store RISC architecture. That meanins that the core cannot
directly manipulate the memory. All data manipulation must be done by loading registers with
information located in memory, performing the data operation and then storing the value back to
memory. There are 37 total registers in the processor. However, that number is split among seven
different processor modes.
The seven processor modes are used to run user tasks, an operating system, and to efficiently
handle exceptions such as interrupts. Some of the registers with in each mode are reserved for
specific use by the core, while most are available for general use. The reserved registers that are
used by the core for specific functions are r13 is commonly used as the stack pointer (SP), r14 as
a link register (LR), r15 as a program counter (PC), the Current Program Status Register (CPSR),
and the Saved Program Status Register (SPSR).
The SPSR and the CPSR contain the status and control bits specific to the properties the
processor core is operating under. These properties define the operating mode, ALU status flags,
interrupt disable/enable flags and whether the core is operating in 32-bit ARM or 16-bit Thumb
state.

There are 37 total registers divided among seven different processor modes. Fifgure 09 shows
the bank of registers visible in each mode. User mode, the only non-privileged mode, has the
least number of total registers visible. It has no SPSR and limited access to the CPSR. FIQ and
IRQ are the two interrupt modes of the CPU.
Supervisor mode is the default mode of the processor on start up or reset. Undefined mode traps
unknown or illegal instructions when they are passed through the pipeline. Abort mode traps
illegal memory accesses as a result of fetching instructions or accessing data.
Finally, system mode, which uses the user mode bank of registers, was introduced to provide an
additional privileged mode when dealing with nested interrupts.
Each additional mode offers unique registers that are available for use by exception handling
routines. These additional registers are the minimum number of registers required to preserve the
state of the processor, save the location in code, and switch between modes.
FIQ mode, however, has an additional five banked registers to provide more flexibility and
higher performance when handling critical interrupts.
When the ARM core is in Thumb state, the registers banks are split into low and high register
domains. The majority of instructions in Thumb state have a 3-bit register specifier. As a result,
these instructions can only access the low registers in Thumb, R0 through R7. The high registers,
R8 through R15, have more restricted use. Only a few instructions have access to these registers.
3.2 TDMI
T-D-M-I stands for:
• Thumb, which is a 16-bit instruction set extension to the 32-bit ARM architecture, referred as
states of the processor. "D" and "I" together comprise the on-chip debug facilities offered on all
ARM cores.
These stand for the Debug signals and EmbeddedICE logic, respectively.
• The M signifies the support for 64-bit results and an enhanced multiplier, resulting in higher
performance. This multiplier is now standard on all ARMv4 architectures and above.
Thumb 16-bit Instructions

With growing code and data size, memory contributes to the system cost. The need to reduce
memory cost leads to smaller code size and the use of narrower memory. Therefore ARM
developed a modified instruction set to give market-leading code density for compiled standard

C language. There is also the problem of performance loss due to using a narrow memory path,
such as a 16-bit memory path with a 32-bit processor.
The processor must take two memory access cycles to fetch an instruction or read and write data.
To address this issue, ARM introduced another set of reduced 16-bit instructions labeled Thumb,
based on the standard ARM 32-bit instruction set. For Thumb to be used, the processor must go
through a change of state from ARM to Thumb in order to begin executing 16-bit code. This is
because the default state of the core is ARM. Therefore, every application must have code at
boot up that is written in ARM. If the application code is to be compiled entirely for Thumb, then
the segment of ARM boot code must change the state of the processor. Once this is done, 16-bit
instructions are fetched seamlessly into the pipeline without any result.
It is important to note that the architecture remains the same. The instruction set is actually a
reduced set of the ARM instruction set and only the instructions are 16-bit; everything else in the
core still operates as 32-bit.
An application code compiled in Thumb is 30% smaller on average than the same code compiled
in ARM and normally 30% faster when using narrow 16-bit memory systems.

An example: ARM7TDMI Block Diagram Figure 10 shows the register bank in the center of the
diagram, plus the required address bus and data bus. The multiplier, in-line barrel shifter, and
ALU are also shown.
In addition, the diagram illustrates the in-line decompression process of Thumb instructions
while in the decode stage of the pipeline. This process creates a 32-bit ARM equivalent
instruction from the 16-bit Thumb instruction, decodes the instruction, and passes it on to the
execute stage.

Debug Extensions
The Debug extensions to the core add scan chains to monitor what is occurring on the data path
of the CPU. Signals were also added to the core so that processor control can be handed to the
debugger when a breakpoint or watchpoint has been reached. This stops the processor enabling
the user to view such characteristics as register contents, memory regions, and processor status.
Embedded ICE Logic

In order to provide a powerful debugging environment for ARM-based applications the
Embedded ICE logic was developed and integrated into the ARM core architecture. It is a set of
registers providing the ability to set hardware breakpoints or watchpoints on code or data. The

Embedded ICE logic monitors the ARM core signals every cycle to check if a breakpoint or
Watch point has been hit. Lastly, an additional scan chain is used to establish contact between
the user and the Embedded ICE logic.
Communication with the EmbeddedICE logic from the external world is provided via the test
access port, or TAP, controller and a standard IEEE 1149.1 JTAG connection.
The advantage of on-chip debug solutions is the ability to rapidly debug software, especially
when the software resides in ROM. This is critical in shortening the development cycle. The use
of Multi- ICE and EmbeddedICE provides full debug capabilities for a processor integrated deep
inside an ASIC, even in a production version of a consumer product.
Architecture details, features & comparison of the ARM7, ARM9, and ARM10 core

families
4.1 ARM7TDMI Processor Core
• Architecture version 4T:
-- 3-stage pipeline
-- Unified bus architecture
-- 32-bit ARM ISA plus 16-bit Thumb extension
• Forward compatible code
• EmbeddedICE on-chip debug
• Hard Macrocell IP
-- Smallest Die Size: 0.53 mm2 on 0.18 μm process
• Up to 110 MHz* on TSMC standard 0.18 μm
• Industry leading 0.25 mW/MHz

The ARM7TDMI has a core based on the fourth version of the ARM architecture. This
implementation uses a three stage pipeline - a standard fetch-decode-execute organization.
It features a unified cache, as well as the Thumb extension permitting 32-bit and 16-bit
operation. It is completely forward compatible, meaning that any code written for this core will
be compatible with any new core releases, such as ARM9 or ARM10. This core also includes the
on-chip debug extension discussed in the previous training module.
The core is successful mainly because of the extremely small but high performance processor -
slightly more than 70,000 transistors in all an with extremely low power consumption.
ARM7TDMI-S
• Synthesizable RTL compliant with the ARM7TDMI
Custom Macrocell:
-- Fully compatible with the ARMv4T architecture.

-- Right denied to modify ARM7TDMI instruction set.
-- Coprocessor interface allows custom functions to
be added outside core.
-- EmbeddedICE support with "Multi-ICE" protocol
converter or third party device.
• Supports AMBA interface:
-- Standard interface, ideal for integration
of the core into an ASIC design.
• Supports full-scan and automatic test pattern generator.

Figure 12 presents a model of the ARM7 processor that is a synthesizable version of the
ARM7TDMI.
This version is fully compatible with the ARMv4T architecture and is functionally identical to
the hardened ARM7TDMI macrocell. Although it is a synthesizable solution, the licensee does
not have the right to change any feature of this core.
ARM720T
• Cached Macrocell for Platform OS Applications
• ARM7TDMI core:
-- ARM v4T ISA
-- THUMB 16-bit instruction set
-- Rev 3 onwards supports ETM7 for non-stop debug
• 8 KB cache:
-- High processor performance with low-speed
memory interface
• Memory Management Unit:
-- Full support for WindowsCE and Symbian OS
• ASB bus interface

ARM720Tcore offers 8 KB of unified instruction and data cache. Also included is a memory
management unit (MMU) that offers virtual-to-physical address translation, 64-entry translation
look aside buffer (TLB), two-level page tables stored in memory, and hardware page-table
walking. There is also a highly flexible mapping scheme that supports 1 MB sections with
permissions, 64 KB large

pages with four sets of permissions, and 4 KB small pages with four sets of permissions. This
processor enables up to 16 domains, each with individual access rights. It also features cyclic
replacement and lockdown features to lock instructions or data into cache for critical real-time
code.
The ARM720T was designed to be flexible and application-specific, especially for devices
running complex operating systems such as Linux, Windows CE, Symbian OS, or PalmOS. It
includes a system control coprocessor for cache and system initialization and the AMBA
Advanced System Bus, or ASB, interface.
ARM7EJ

• New Jazelle-enhanced 32-bit processor core
• Thumb, Jazelle and DSP extensions
• Five stage pipeline and high performance multiplier
• Unified instruction and data bus
• v5TEJ architecture
• Real-time trace with the ETM9 macrocell
• Contact ARM for availability and characteristics data

The ARM7EJ solution is a compact CPU specifically designed for applications demanding low
power consumption. It has a memory interface identical to that of the ARM7TDMI-S? core. It
features the V5TEJ architecture instructions, including DSP extensions. This core
implementation also features a five-stage pipeline similar to that of an ARM9 class processor,
and supports easy integration of the Embedded Trace Macrocell-9 for real-time-trace capability.
ARM SC100 Secure Code

• Optimized processor family for smart card solutions
• Security enhanced ARM7TDMI design
-- ARMv4T compliant
-- Low power, high performance and
small die size
-- Memory Protection Unit (MPU)
-- Anti-tampering/counterfeiting measures
-- JavaCard support
-- Standard coprocessor interface for
incorporation of cryptographic solutions.
• SC100 - Small synthesizable IP:
-- 35K gates - 1 mm2 area
-- 66 MHz* on 0.25 mm @2.5 V
-- Power: 0.7 mW/MHz

The ARM SecurCore family provides unique 32-bit RISC-based solutions for smart card
development needs, offering system designers privileged access to ARM processor cores to
create fast and secure e-commerce solutions.
The flexible Memory Protection Unit was specifically designed to ensure security of operating
system and application data. This enables future generations of smart card solutions having
multiple applications running on a single card. Special features in the core have been designed to
help obscure

UNIT V
ARM ORGANIZATION

Processor activity and hide application program signatures, making SecurCore activity difficult
to detect and observe.
The SC100 runs all existing ARM JavaCard software implementations. Future SecurCore
processors will include ARM's Jazelle technology for direct execution of Java byte codes to
enable high performance low-power JavaCard applications. The advantages over a purely
software-emulated JavaCard virtual machine are clear: significant reduction in execution time,
improved responsiveness, and significantly power consumption.
The SecurCore family of processors also includes a standard coprocessor interface for simple
incorporation of cryptographic coprocessors. A coprocessor can be designed for a very specific
purpose and can contain as many registers and data paths as needed to implement the specific
functions.
To provide one solution, ARM has integrated into the SC100 core a cryptographic accelerator,
the Montgomery Multiplier Engine (MME). This engine is optimized for RSA calculations,
providing five times the performance of software solutions without any restrictions on key
length.
The SecurCore family offers all the benefits of ARM's industry leading high-performance, low-
power architecture, with significant design differences that make the ARM approach ideal for
secure applications.
4.3 Comparison of the ARM7TDMI with the ARM9TDMI families

To increase performance, the pipeline of the ARM9TDMI core was re-engineered from the three
stage system used by the ARM7TDMI family to five stages.
Operations previously performed in the execute stage of ARM7 are spread across four stages in
the ARM9 pipeline: decode, execute, memory, and write. The reorganization and removal of
these critical paths resulted in a much higher clock frequency.
Another performance improvement is the reduced cycles per instruction rating of the processor.
This is due to improved load and store instruction cycle counts. Single load and store instructions
are now single-cycle operations. This is an enhancement over the ARM7 operation, which used
the execute stage three times: first, to calculate the address; second, to access the memory and

cache; and third, to write the data to the register bank. On ARM9, each step has a separate
pipeline stage requiring only one cycle, avoiding pipeline stalls.
The ARM7TDMI family is popular with applications where small die size, high performance,
and low power consumption help reduce system costs, especially when the system does not
require cache. Applications include cellular phones, MP3 players, and mass storage.
The ARM9TDMI family are used for high performance applications that previously could not be
implemented at the same cost. This family of cores was developed with twice the performance of
the ARM7TDMI and without changes to the architecture. It is ideally suited for the next
generation of cell phones, personal digital assistants, multi-function peripherals and fast printers,
and set-top box applications.
ARM9TDMI Processor Core

• ARM 32-bit and Thumb 16-bit instructions (v4T ISA).
• Very high code compatibility with ARM7TDMI:
-- Only change is simplified data-abort handler
• Portable to 0.25, 0.18 μm CMOS and below.
• Harvard 5-stage pipeline implementation:
-- Higher performance from reduced cycle per instruction (1.5)
• Coprocessor interface for on-chip coprocessors:
-- Allows floating point, DSP, graphics accelerators.
• EmbeddedICE debug capability with extensions:
-- Hardware single step
-- Breakpoint on exception.

The Harvard bus architecture creates separate instruction and data memory interfaces, enabling
simultaneous access to instructions and data.
The ARM9TDMI represents a new family of CPU technology. The enhancements made to this
core family doubles the performance of the ARM7TDMI family.
ARM940T Macrocell

• Processor for real-time embedded applications:
-- ARM9TDMI Core (v4T ISA)

-- 4 KB instruction and data cache with lock-down
-- Protection unit for RTOS
-- Code compatible from ARM7 Thumb CPUs
-- Hard Macro IP:
-- 4.2 mm2 on 0.18 μm
-- Up to 200 MHz (worst case) on TSMC standard
0.18 μm
-- Power: 0.75 mW/MHz

The ARM940T represents the first sample of a cache-enabled ARM9TDMI core.
This core contains 4 KB each of instruction and data cache, with an MPU for use by real-time
operating systems. This system makes the 940T an ideal CPU for embedded control applications,
such as wireless networking devices, printers, or automotive control devices. The protection
units allow definition of eight regions of memory, each with independent cache, write buffer
enable, and access permissions. The protection unit is configured using on-chip registers, which
provides a simple programmer's model. This eliminates the need for page-mapping tables stored
in memory.

ARM's 940T Core Structure:
The core processor is about one-third of the die size. When other components are incorporated -
the system control coprocessor, bus control, memory protection unit, and the cache itself - the
integer unit becomes insignificant in total die area. This core has 4 KB caches, the smallest
amount of cache used in the entire product family. One can visualize how small this integer unit
and cache logic becomes when integrated with synthesized peripherals and the other features that
complete the system-on-chip (SoC) design.

ARM920T Macrocell
• Cached processor for platform OS applications:
-- 16 KB instruction and data cache
-- ARMv4 MMU for Palm OS, Symbian OS,
Linux, and Windows CE
-- Code compatible from ARM7 Thumb CPUs
-- Hard Macro IP:
-- 11.8 mm2 on 0.18 μm
-- Up to 200 MHz (worst case) on TSMC
standard 0.18 μm
-- Power: 0.8 mW/MHz
The ARM920T was created to address the needs of more complex systems using a platform
operating system, such as Windows CE or Symbian OS. This core replaces the MPU of the 940T
with a full memory management unit, and increases the instruction and data cache sizes to 16 KB
for each. The performance, MMU, and cache of this core make it ideal for Personal Digital
Assistants, smartphones, and set-top box applications.
ARM922T
Cached processor for Platform OS applications:
• 8 KB instruction and data cache
• ARMv4 MMU for: Palm OS, Symbian OS, Linux, and Windows CE
• Code compatible from ARM7 Thumb CPUs
• Hard Macro IP:
-- 8.1 mm2 on 0.18 μm
• Up to 200 MHz (worst case) on TSMC standard 0.18 μm
• Power: 0.8 mW/MHz

The ARM922T core was created with half the amount of instruction and data caches of the 920T,
resulting in smaller silicon overhead. Other than this simple difference, the two cores are
fundamentally identical.

ARM920T and ARM922T MMU
• Two TLBs:
-- 64-entry instruction TLB
-- 64-entry data TLB
• Two-level page tables (stored in memory)

• Hardware page-table walking
• Cyclic replacement
• Lockdown features:
-- Lock instructions or data into cache for critical real-time code
Both the 920T and 922T core utilize an MMU with the same features. There are two, 64-entry
translation look-aside buffers for instruction and data, two-level page tables, hardware page-table
walking, and support for random or round robin replacement. Lockdown features are also
included to secure critical real-time code. This cache architecture results in two solutions that are
simpler to program and minimize power, area, and required memory.
ARM9E Family
The ARM9E family is currently comprised of four different units. The base ARM9E integer
processor offers a high performance and low gate count synthesized solution in its most basic
form.
The other units offer the true capabilities of the core when coupled with SRAM, cache, vector
floating point acceleration, and the Jazelle Java extensions.
As a suite of synthesizable solutions, the final gate count and power consumption statistics of
these cores depends on the implementation and the process technology used.

ARM9E Core Architecture
• 32-bit load/store RISC architecture
• Efficient 5-stage pipeline
• ARM andThumb instruction sets
• 37 x 32-bit registers
• 32-bit ALU and barrel shifter
• Enhanced 32-bit MAC block
• ETM9 interface
• AMBA AHB interface
• Coprocessor interface
• Synthesizable or soft IP

As mentioned hard macrocells always have been the ultimate answer for optimized performance
and die size in any given processor design. But newer synthesized design flows are pushing the
envelope for SoC applications.
The ARM9E family was built upon the standard set by the ARM9TDMI family, but it also
provides freedom for defining the cache and tightly coupled SRAM configurations used by the
core.

It was also the first family of CPUs designed to the AHB bus of the AMBA 2.0 specification.
Another key technological enhancement to this family of CPUs includes DSP extensions for true
realtime systems. This improvement to the architecture introduces additional multiply and
saturated math instructions for use by complex DSP algorithms. This family is also fully code
compatible with ARMv4T architecture cores.
Lastly, to enhance the debug capabilities already common in ARM CPUs, the Embedded Trace
Macrocell interface was added. This interface enables real-time debugging of complex real-time
systems.

ARM966E-S

• Solution for hard real-time applications:
• ARM9E core (v5TE ISA).
• I and D TCM memory interfaces with 'wait' signal
• Selectable size Instruction and Data TCM
(0 KB - 64 MB)
• AMBA AHB bus interface
• Provides an "off-the-shelf" standard ARM9E
solution
• ETM9 interface for real-time trace
The ARM966E-S core was designed with hard real-time applications as the primary objective.
An example is servo-motor control in hard disk drives. The key feature of this CPU over the base
ARM9E-S is the tightly coupled memory interface that allows selectable SRAM sizes of up to 64
MB.
ARM946E-S
• Cached processor for embedded real-time applications:
• MPU to support RTOS: like μITRON and VxWorks
• Selectable size instruction and data caches and
TCMs:(0 KB, 4 KB, 8 KB ... 1 MB)
• Instruction and data TCM interfaces.
• 150 MHz* on TSMC 0.18 μm

The ARM946E-S core takes the developments made by the 966E-S and adds selectable
instruction and data caches. Since the memory protection unit is integrated with cache, this
processor is an excellent High performance solution for embedded real-time applications, such as
engine management systems in automobiles and network appliances.

ARM946E-S Caches
• Cache is 4-way set associative:
• Can be built with compiled ASIC RAM.
• Sizes of 0 KB, 4 KB, 8 KB ? 1 MB supported:
• I and D cache sizes are independently selectable.
• Cache lock-down on per-set basis:
• Granularity is a quarter of the cache size.
• Software selectable replacement algorithm:
• Supports pseudo-random and round-robin
• Write through and write back s/w selectable
• Line length fixed at 8 words
The cache memory blocks of this core are selectable up to 1 MB. The cache is 4-way set
associative and selectable up to 1 MB. It also features lock-down support on a per-set basis,
random and round robin replacement support, software selectable options for write through and
write back, and eight word cache lines.
ARM9EJ-S Core Architecture
• 32-bit load/store RISC architecture

• Efficient 5-stage pipeline:
• Fetch
• Decode
• Execute
• Memory
• Write back
• ARM, Thumb and Java instruction sets
• 31 x 32-bit registers
• 32-bit ALU and barrel shifter
• Enhanced 32-bit MAC block
• ETM9 interface
The ARM926EJ-S core, with full MMU support and selectable tightly coupled memory and
cache sizes, introduces a new generation of Internet-enabled devices. For example, set-top-boxes
and wireless communications products benefit from this single processor solution. This processor
can be compared to the ARM920T or 922T cores in its base functionality and performance.
Now, with the added Jazelle enhancements, Java functions can be performed without the need
for complicated coprocessors or slow software implementations.
ARM10E Architecture Enhancements
ARM10E implements:
• Harvard 6-stage pipeline
• Supports v5TE instruction set
• EmbeddedICE RTII debug logic
• Fully compatible with v4T architecture
• 390-700 MIPS integer performance based on Dhrystone 2.1
• Branch prediction:
• Eliminates 70% of branches on typical code sequences
• Separate load/store unit:
• 64-bit path to register bank - load two registers simultaneously
• Hit-under-miss caches:
• Significantly reduces pipe-line stalls
• Write buffer:
• Holds up to 8 double-words (16 register values)
• New energy saving power down modes
Anticipating the market's needs for multimedia digital consumer devices, ARM developed the
ARM10 family of advanced microprocessor cores with 390-700 MIPS integer performance. To
achieve this performance, additional features were added. The pipeline was widened to add an
additional stage, and improvements were made to the EmbeddedICE logic to provide support for
realtime debug. All the while, compatibility was maintained with ARMv5TE and v4T for ease of
code migration.
Performance enhancements include the introduction of branch prediction, hit-under-miss support
in the MMU and cache architecture, an improved write buffer that holds up to eight double-
words, and a separate load and store unit. These features improve code performance by lowering
the average number of cycles per instruction of the processor, and also help when code is heavily
dependent on cache operations.
As an added enhancement, the architecture, circuits, layout, and software controlled power-down

modes have been developed specifically to achieve low-power operation on high-performance
processes. These enhanced features have been optimized to take advantage of clock gating and
dynamic power reduction.

High Performance Features
• 64-bit accesses to on-chip I and D caches:
• Fetch two instructions/cycle
• Load/store two registers/cycle (LDM/STM)
• Dual 64-bit fast AHB bus:
• Separate buses for instruction and data
• >1 Gbyte/sec bandwidth @ 200 MHz (each)
• Split transaction extensions
• 64-bit coprocessor interface:
• Load/store double-precision operands in one cycle
• 32-bit integer data path saves area and power
The ARM10E is also the first family of processors designed with a 64-bit data bus. This feature
combines the frugal power and die size characteristics of a 32-bit CPU with the bandwidth
requirements of high performance systems. The 64-bit coprocessor interface also allows for
increased performance of floating point operations when combined with the Vector Floating
Point-10 coprocessor.

ARM1020E and ARM1022E
• Highest performance ARM processor cores:
• 1.3 MIPS/MHz
• 1.5x ARM9 performance
• Support for High Performance IEEE 754 Floating Point:
• 600-1200 MFLOPS
• 300MHz (worst case) on TSMC 0.15 μm
• Low Power: 0.7 mW/mips (0.15 μm)
• ARM1020E: 32K I and D cache
• 17.5 mm2

• ARM1022E: 16K I and D cache
• 12 mm2

• Roadmap to Jazelle enhanced cores

The ARM1020E and ARM1022E processor cores offer the highest performance per unit of
power of any 32-bit processor running above 200 MHz. With an unprecedented 0.7 mW/MIPS
power consumption ratio, worst case on 0.15 μm process technology, these processors offers
ideal solutions for high end platform applications. Examples include MPEG4 videophones,
smartphones, and Web pads.
Memory Management and caches are comparable to the ARM920T, ARM922T and ARM720T
products - ensuring code portability and protection for existing software investments. Future
implementation in this family will also integrate the Jazelle Java enhancements established by
the ARM9EJ-S family.

Vector Floating Point (VFP10)
• High-performance IEEE 754 floating point:
• Single and double precision
• Vector operations (up to 8 values per vector)
• Thirty-two 32-bit (SP) registers (usable as sixteen DP registers)
• Single cycle FMAC throughput (single precision
- double precision FMAC in 2 cycles)
• 10-100x performance increase over software emulation
• Optional coprocessor:
• 1.6 mm2 in 0.15 ?m
• Target:
• Printers, imaging, graphics, embedded control
Many real-time control applications in the industrial and automotive fields benefit from the
dynamic range and precision of floating-point offered by the ARM VFP10. Automotive power
train, anti-lock braking, traction control, and active suspension systems are examples of mission-
critical applications where precision and predictability are essential requirements. Incorporating
the ARM VFP10 into a SoC design can reduce development time and provide reliable
performance. The vector processing capability of the ARM VFP10 also offers increased
performance for imaging applications, such as scaling, transforms, and font generation used in
printing, 3D transforms, FFT, and graphic filtering.

